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An Explicit Separation of
Relativised Random Polynomial Time

and
Relativised Deterministic Polynomial Time

RICHARD ZiPPEL
Department of Computer Science, Cornell University

Ithaca, New York 14853 U. S. A.

l n this note .i demonstratejhat a certain class of naturally occuring prob-
lems'involving an owacle are solvable in random polynomial time, but not in
deterministic polynomial time. This class of problems is especially interesting
because a very slight change in the parameters of the problem yields one that
does have a polynomial solution. ( (.. £ J

1. Introduction
Recently there has been increased interest in the problem of interpolating a sparse

polynomial P from its values. Efficient solutions to this problem can be used to sim-
plify many multivariate polynomial calculations, including those as fundamental as
computing the greatest common divisor of two polynomials. An essential component
of determining P is the somewhat simpler of problem of showing that P is not the zero
polynomial. In this paper we show that when only given certain information about P,
no deterministic polynomial time algorithm can distinguish P from the zero polyno-
mial. However, there do exist probabilistic algorithms that distinguish P from zero in
polynomial time. Since proving P is or is not the zero polynomial is a special case of
determining P, these results imply that P cannot be determined in deterministic poly-
nomial time, and yet there exist probabilistic polynomial algorithms for this problem
[8, 9].

To be more precise, let P(X,... , X,,) E Z[X,... , X,,] be an n variable polyno-
mial with rational integer coefficients and let Bp be a black box that represents P. 83p
accepts an n-tuple (a,,... ,a.) E Z" and returns the value of P(a,... ,a,) in Z. If Bp
ever returns a non-zero value then P is not the zero polynomial. The zero equivalence
problem for P is to provide an algorithm for generating n-tuples such that if P vanishes
at each of the n-tuples, it is the zero polynomial.

To make this problem solvable bounds are needed that characterize the size of P.
We are interested in algorithms whose time requirements are polynomial in terms of
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these bounds. The most direct approach is to give bounds on the degrees of the Xi in
P. We call this the zero equivalence problem with degree bounds. This problem was
shown to be solvable in probabilistic polynomial time simultaneously by Schwartz [8]
and Zippel [9] in 1979. Here, we show that this problem has no deterministic polynomial
time solution.

Alternatively, we might be given a bound on the number of non-zero terms in the
polynomial P instead of the degree bound. This problem is called the zero equivalence
problem with term bounds. In 1987 ben Or and Tiwari [1] and Zippel [10] independently
showed that this problem could be solved in deterministic polynomial time. Other
recent work on this problem includes [2, 4, 5]. /1,1

I COp,
To minimize the number of subscripts in formulae we use a variant of Laurent I\ .IP',P

Schwartz's notation. Let X = (X 1 , X 2 ,. .. , X,) and e' = (el, e2,.. e,,) be two vectors.
Then we write the usual (inner) dot product as Accesion fo,

. X = eiXI + e2X2 + .'- + eNX,.IS CRA&Ie2 2eD~ TIC TA

Unannouicr.d
We also extend this notation to exponentiation as follows Justiticatio,

Xe= (Xe,,Xe 2,...,Xen) and X, =X 1  2  n By
Disflb-ution

Thus the multivariate polynomial Avalability Code

l JXe X2C2 . •. . 91 ell'e, etn Avdai and/or
c- + C2X--2I -1 X2 +n Dist Special

will be written

X + C2 X 2 + " + 1

The vector accent is always given when this notation is used.

Since the black box accepts arguments that can be any rational integer, we need
to consider the time Bp requires to compute its values. Otherwise, we might be able
to use exceptionally large inputs to the black box to get more information than is
justified. If the inputs to the black box are integers with absolute value less than 2w,
the time required for an evaluation by the black box is 0(w " ) for some r. If the black
box implements a straightline algorithm and uses classical integer arithmetic, r = 2.
If fast arithmetic algorithms are used r 1 1 + e for small e. This estimate ignores the
complexity of the computation performed by Bp, but tries to take into account the
growth in time required by larger inputs.

2. Main Results
The key observation in this paper is that it is easy to find non-zero polynomials

that vanish at many points. This is shown in the following proposition.

Proposition 1. Let D, T and n be integers such that D" > T. Let $ = {a) be a
set of T - 1 n-tuples. There exists a polynomial with rational integer coefficients with
no more than T non-zoro monomials and that vanishes at each point in S.
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Proof: In fact, there are many polynomials that satisfy the requirements. Choose a
set of T distinct n-tuples, ' T,.. , T. There exists a polynomial with these n-tuples as
exponents that vanishes at every point in S.

Let P(X) be a polynomial whose monomials have el,.. , eT as exponent vectors:

P(X) = ClX1l + C2 X1 2 + .. + CT eT .

The coefficients (ci) will be determined from S. For P to vanish at di E S the ci must

satisfy the following linear equation:

Clr' + 2ai +" + CTO.

Thus P(X) vanishes at each element of S if the cj satisfy the following system of linear

equations.
clG1 + C2 d, +. +CT =0

Cp5 1 +C2 "
2 "+ CT T = 0

CI aT +C 2 a 7 +.'+ CTdT = 0

Since these equations are homogenous and there are more variables than equations, the

system possesses a non-trivial solution. 5
Proposition 1 directly implies the non-existence of a deterministic algorithm for

zero recognition.

Proposition 2. Given a black box representing a polynomial P(X) in n variables and

of degree less than D in each variable, any deterministic algorithm the determines if P

is the zero polynomial runs in time at least O(D" log* D).

Proof- The time required by the algorithm is at least as large the number of trial

evaluations used. Since no polynomial of degree less than D has more than D' terms,

D' trials suffice. Thus the problem can be solved in exponential time. By proposition
1, if the algorithm uses less than D' trials there will be polynomials that meet the

degree bounds and that are indistinguishable from the zero polynomial. Thus at least
D" trial evaluations are required.

Since each of these trial points must be distinct, the components must be chosen

from a set of at least D elements. Thus Bp will require O(log' D) time for each trial,
and any deterministic algorithm will need at least O(D' log' D) time. 5

Though the zero equivalence problem, given degree bounds, is not solvable in
deterministic polynomial time, notice that a polynomial that vanishes at each of O(D n )

trial points, constructed as in the proof of proposition 2 would have O(Dn) non-zero

terms. It would be very interesting to know if there exists a polynomial that vanishes

at those trial points and that has a more succint representation (straight-line program,
for instance).

Probabilistic algorithms for the zero equivalence problem were initially introduced

by Schwartz [8) and Zippel [9]. These algorithms require a random number generator.
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Given an e, this algorithm shows that P is zero with probability less than C, averaged
across random number generators with normal distributions. Such a probabilistic al-
gorithm solves a problem in polynomial time if the time required is polynomial in the
inputs and polynomial in e-.

The probabilistic algorithms are based on the following proposition proved in [9,
10], where it is also shown to be the best possible result. The slightly weaker result of
the last line of the proposition appears and is used in the work of Schwartz [8].

Proposition 3. Let k be a field, f E k[X 1,..., X,,] and the degree of f in each of Xi
be bounded by di. Let Z,(B) be the number of zeroes of f, F such that xi is chosen
from a set with B elements, B > d. Then

Z.,(B) B B-(B - d)(B -d2) ... (B -d.)
0o(d + d2+ +... + d.)B"-I ) .

This proposition immediately gives a probabilistic algorithm for zero equivalence.
We only indicate that a polynomial is non-zero when Bp returns a non-zero value,
proving that P is non-zero. We want to know the probability that Sp returns zero
even though P is not identically zero. Assume that P is not the zero polynomial.

Define the set SB to be

sB = {(xi,,..,n)10 _< x < B}.

Let x be an element of SB such that Bp returns zero. Then i is one of the at most
Zn(B) zeroes in of P in SB. If we choose X randomly, the probability that we will get
a zero of P(X) is (by proposition 3)

Z,(B) < (di +d 2 +...+d,) = nD
Bn - B B'

where the D > max(di). The probability that k randomly chosen elements of SB
would both yield a value of zero (even though P is not the zero polynomial) is less than
(nD/B)k.

To verify that a polynomial P(XI,... , X,), whose degree in each variable is less
than D, is zero with probability less than e we need to perform k evaluations with
random elements of SB where

< ( )(1)

A single evaluation will suffice if B is chosen such that B > nD/C. The cost of the
single evaluation is the cost of the black box evaluation. Recall that the cost of a black
box evaluation with n-tuple components of size w is O(wr), for some r. Since the size
of the components of the random n-tuple is log nD/e, the cost of a single evaluation is
O(logr nD/e). If k different evaluations are used, then we need to choose B such that
(1) is satisfied. So,

log B < log nD + - log-'
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The cost of a single evaluation when k are intended is

and the total time required for k evaluations using the probabilistic approach will be

Cr = 0j (klog' nDL l1k

This quantity is minimized when

k= (r - 1)log"
log nD

Since 1/e > nD, using multiple evaluations with relatively small evaluation points is
better than a single evaluation at a large evaluation point.

Replacing k by this quantity in Cprop we have

Cprob = 0 (r - 1)log i l nD
log nD log f

=0 Ologe ( log nD logn)+--1

= 0(log- x log r- 1 nD).

Notice that the cost of the probabilistic algorithm is linear in the logarithm of of
the error. This, I feel, is a good characterization of what it means for a probabilistic
algorithm to be polynomial time.

There is a slight variant of the zero equivalence problem that can be solved in
deterministic polynomial time. Instead of being given degree bounds for the polynomial,
we are given a bound on the number of non-zero monomials in the polynomial. We call
this problem the zero equivalence problem with term bounds.

The following proposition and the algorithm based on it are due to Gregoriev and
Karpinski [3].

Proposition 4. (Grigoriev and Karpinski) Let P(s) E Z[X 1,...,X,,] and assume
that P has no more than T monomials. Then there exists a set of T n-tuples such that
P either is different from zero at one of them or P is identically zero.

Proof- Write P as
P(9 ) -- aXe + ...- + aTX t ',
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where some of the ai may be zero. If we evaluate P at (2, 3, 5,... ,p,) (where p,, is the
n-th prime) we will have

P(2,31,...,p,) = al(2,3,...,pn)' + a2(2,3,... ,pn)IF2 + +...+ aw(2,3, ... ,pn)'

- aim, + a2 m 2 + +.. + aTMT,

where the mi are dstinct because of unique factorization. Using i- - (2 k, 3k,... ,p)
as our evaluation points,

P(4) =a, Mk + a2 m k + ... + aTMT.

If P is zero at each of i0,... , then the coefficients of P, aj, will satisfy the
following system of linear equations:

al + a 2 + "aT = 0

aim 1 +a2M2 -" +aTmT = 0

aim 2+ a2M 2+ - -+ aTM 2=0

1 2-T

aim1  +a 2 m2  + + aTMT 01 2 -. T-

This is a Vandermonde system and is nonsingular since each of the mi are different.
Thus each either all of the ai are zero or P is different from zero and will not vanish
at one of&. 0

A deterministic solution of the zero equivalence problem with term bounds follows
from proposition 4 easily. We pass the trial points 0,... ,t T-i to Bp. If Bp returns
an answer different from zero for any of the & then P is not the zero polynomial.
If Sp returns zero for all of the trial points then P is the zero polynomial. This
algorithm requires T evaluations using Bp, the last of which will involve numbers as
large pT-'. The n-th prime is approximately n log n. So the k-th evaluation by Bp will
require O((k log(n log n)) r ) time, which we approximate by O((k logn)r). Thus all T
evaluations require

T-1

Z O((k log )r) = O(Tr+lr-1 log' n) = O(Tr+l logr n)
k=O

time.

3. Discussion

The results of the previous section are summarized in the following table. The
columns correspond to probabilistic and deterministic algorithms respectively. The
rows correspond to whether degree bounds or term bounds are given. In the determin-
istic, bounded degree case, we have given a lower bound on the time required, while
for the other two entries we have demonstrated algorithms that achieve the indicated
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performance. Also recall that r is a constfnt corresponding to the type of arithmetic
being used by Bp. For classical arithmetic r = 2; for fast arithmetic r is slightly greater
than 1.

I Probabilistic I Deterministic
degree bounds J log x log" - nD D n logr D

term bounds I T -,llogrn

As remarked earlier, the zero equivalence problem with degree bounds cannot be
solved in deterministic polynomial time, yet it can be solved in probabilistic polyno-
mial time. We find it very curious that with a slight change to the way information
is provided, the problem can be solved in determinstic polynomial time. The zero
equivalence problem seems lies on the boundary between those problems that can and
cannot be solved in deterministic polynomial time. Though earlier work has shown
that random and deterministic polynomial time can be separated via an oracle [6], we
find this example interesting because it arises in a common practical problem.

By representing the polynomial as a black box, we have swept the issues of the
size of the computation required to compute P(5) under the rug. If we could look
inside 5p and examine the "program" used to compute P(x-) we might be able to
show that Bp represents the zero polynomial without any bounds on P. For example,
it seems likely that one can deterministically prove that a straightline program for a
polynomial (in the sense of Kaltofen [7]) can be deterministically shown to represent
the zero polynomial in time polynomial in the size of the straightline program.
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